✅ Quiz M3.01#
Question
Which parameters below are hyperparameters of HistGradientBoostingClassifier?
Remember we only consider hyperparameters to be those that potentially impact
the result of the learning procedure and subsequent predictions.
a)
Cb)
max_leaf_nodesc)
verbosed)
classes_e)
learning_rate
Select all answers that apply
Question
Given an instance named model as defined by:
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
how do you get the value of the C parameter?
a)
model.get_parameters()['C']b)
model.get_params()['C']c)
model.get_params('C')d)
model.get_params['C']
Select a single answer
Question
Given model defined by:
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
how do you set the value of the C parameter to 5?
a)
model.set_params('C', 5)b)
model.set_params({'C': 5})c)
model.set_params()['C'] = 5d)
model.set_params(C=5)
Select a single answer
Question
Given model defined by:
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
model = Pipeline([
('scaler', StandardScaler()),
('classifier', LogisticRegression())
])
how do you set the value of the C parameter of the LogisticRegression component to 5:
a)
model.set_params(C=5)b)
model.set_params(logisticregression__C=5)c)
model.set_params(classifier__C=5)d)
model.set_params(classifier--C=5)
Select a single answer