π Solution for Exercise M6.01#
The aim of this notebook is to investigate if we can tune the hyperparameters of a bagging regressor and evaluate the gain obtained.
We will load the California housing dataset and split it into a training and a testing set.
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
data, target = fetch_california_housing(as_frame=True, return_X_y=True)
target *= 100 # rescale the target in k$
data_train, data_test, target_train, target_test = train_test_split(
data, target, random_state=0, test_size=0.5
)
Note
If you want a deeper overview regarding this dataset, you can refer to the Appendix - Datasets description section at the end of this MOOC.
Create a BaggingRegressor
and provide a DecisionTreeRegressor
to its
parameter estimator
. Train the regressor and evaluate its generalization
performance on the testing set using the mean absolute error.
# solution
from sklearn.metrics import mean_absolute_error
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import BaggingRegressor
tree = DecisionTreeRegressor()
bagging = BaggingRegressor(estimator=tree, n_jobs=2)
bagging.fit(data_train, target_train)
target_predicted = bagging.predict(data_test)
print(
"Basic mean absolute error of the bagging regressor:\n"
f"{mean_absolute_error(target_test, target_predicted):.2f} k$"
)
Basic mean absolute error of the bagging regressor:
37.25 k$
Now, create a RandomizedSearchCV
instance using the previous model and tune
the important parameters of the bagging regressor. Find the best parameters
and check if you are able to find a set of parameters that improve the default
regressor still using the mean absolute error as a metric.
Tip
You can list the bagging regressorβs parameters using the get_params
method.
# solution
for param in bagging.get_params().keys():
print(param)
bootstrap
bootstrap_features
estimator__ccp_alpha
estimator__criterion
estimator__max_depth
estimator__max_features
estimator__max_leaf_nodes
estimator__min_impurity_decrease
estimator__min_samples_leaf
estimator__min_samples_split
estimator__min_weight_fraction_leaf
estimator__monotonic_cst
estimator__random_state
estimator__splitter
estimator
max_features
max_samples
n_estimators
n_jobs
oob_score
random_state
verbose
warm_start
from scipy.stats import randint
from sklearn.model_selection import RandomizedSearchCV
param_grid = {
"n_estimators": randint(10, 30),
"max_samples": [0.5, 0.8, 1.0],
"max_features": [0.5, 0.8, 1.0],
"estimator__max_depth": randint(3, 10),
}
search = RandomizedSearchCV(
bagging, param_grid, n_iter=20, scoring="neg_mean_absolute_error"
)
_ = search.fit(data_train, target_train)
import pandas as pd
columns = [f"param_{name}" for name in param_grid.keys()]
columns += ["mean_test_error", "std_test_error"]
cv_results = pd.DataFrame(search.cv_results_)
cv_results["mean_test_error"] = -cv_results["mean_test_score"]
cv_results["std_test_error"] = cv_results["std_test_score"]
cv_results[columns].sort_values(by="mean_test_error")
param_n_estimators | param_max_samples | param_max_features | param_estimator__max_depth | mean_test_error | std_test_error | |
---|---|---|---|---|---|---|
11 | 29 | 1.0 | 0.8 | 9 | 39.834615 | 0.803937 |
16 | 12 | 1.0 | 1.0 | 8 | 41.039688 | 1.306609 |
14 | 19 | 0.8 | 0.8 | 7 | 42.619110 | 1.258535 |
5 | 19 | 0.5 | 1.0 | 6 | 45.107474 | 1.132817 |
17 | 23 | 0.5 | 0.8 | 6 | 45.197085 | 1.506651 |
2 | 12 | 0.8 | 0.8 | 6 | 45.579526 | 1.512740 |
8 | 28 | 1.0 | 0.5 | 8 | 45.581508 | 1.285089 |
10 | 17 | 0.8 | 0.5 | 7 | 46.828409 | 1.110867 |
12 | 15 | 0.8 | 0.5 | 7 | 46.976628 | 1.629772 |
18 | 21 | 1.0 | 0.8 | 5 | 48.332878 | 1.028696 |
7 | 13 | 0.5 | 0.5 | 7 | 48.771372 | 2.414682 |
1 | 27 | 0.5 | 0.5 | 6 | 48.793110 | 1.794913 |
15 | 16 | 0.5 | 0.8 | 4 | 52.922203 | 1.286438 |
3 | 14 | 1.0 | 0.5 | 5 | 53.364304 | 2.220678 |
13 | 18 | 1.0 | 0.5 | 5 | 53.461587 | 1.875600 |
6 | 14 | 1.0 | 0.5 | 4 | 56.550839 | 1.532654 |
0 | 25 | 0.8 | 1.0 | 3 | 56.551042 | 1.058142 |
19 | 18 | 0.8 | 1.0 | 3 | 56.834216 | 1.040195 |
9 | 13 | 0.8 | 0.5 | 4 | 57.041556 | 2.133220 |
4 | 15 | 1.0 | 0.5 | 3 | 60.692904 | 2.207571 |
target_predicted = search.predict(data_test)
print(
"Mean absolute error after tuning of the bagging regressor:\n"
f"{mean_absolute_error(target_test, target_predicted):.2f} k$"
)
Mean absolute error after tuning of the bagging regressor:
38.33 k$
We see that the predictor provided by the bagging regressor does not need much hyperparameter tuning compared to a single decision tree.