Comparing model performance with a simple baseline

Comparing model performance with a simple baseline#

In this notebook, we present how to compare the generalization performance of a model to a minimal baseline. In regression, we can use the DummyRegressor class to predict the mean target value observed on the training set without using the input features.

We now demonstrate how to compute the score of a regression model and then compare it to such a baseline on the California housing dataset.

Note

If you want a deeper overview regarding this dataset, you can refer to the section named β€œAppendix - Datasets description” at the end of this MOOC.

from sklearn.datasets import fetch_california_housing

data, target = fetch_california_housing(return_X_y=True, as_frame=True)
target *= 100  # rescale the target in k$

Across all evaluations, we will use a ShuffleSplit cross-validation splitter with 20% of the data held on the validation side of the split.

from sklearn.model_selection import ShuffleSplit

cv = ShuffleSplit(n_splits=30, test_size=0.2, random_state=0)

We start by running the cross-validation for a simple decision tree regressor which is our model of interest. Besides, we will store the testing error in a pandas series to make it easier to plot the results.

import pandas as pd
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import cross_validate

regressor = DecisionTreeRegressor()
cv_results_tree_regressor = cross_validate(
    regressor, data, target, cv=cv, scoring="neg_mean_absolute_error", n_jobs=2
)

errors_tree_regressor = pd.Series(
    -cv_results_tree_regressor["test_score"], name="Decision tree regressor"
)
errors_tree_regressor.describe()
count    30.000000
mean     45.709375
std       1.270852
min      42.790252
25%      45.033623
50%      45.646700
75%      46.694564
max      48.084202
Name: Decision tree regressor, dtype: float64

Then, we evaluate our baseline. This baseline is called a dummy regressor. This dummy regressor will always predict the mean target computed on the training target variable. Therefore, the dummy regressor does not use any information from the input features stored in the dataframe named data.

from sklearn.dummy import DummyRegressor

dummy = DummyRegressor(strategy="mean")
result_dummy = cross_validate(
    dummy, data, target, cv=cv, scoring="neg_mean_absolute_error", n_jobs=2
)
errors_dummy_regressor = pd.Series(
    -result_dummy["test_score"], name="Dummy regressor"
)
errors_dummy_regressor.describe()
count    30.000000
mean     91.140009
std       0.821140
min      89.757566
25%      90.543652
50%      91.034555
75%      91.979007
max      92.477244
Name: Dummy regressor, dtype: float64

We now plot the cross-validation testing errors for the mean target baseline and the actual decision tree regressor.

all_errors = pd.concat(
    [errors_tree_regressor, errors_dummy_regressor],
    axis=1,
)
all_errors
Decision tree regressor Dummy regressor
0 47.336889 90.713153
1 47.115550 90.539353
2 44.110407 91.941912
3 43.620679 90.213912
4 48.084202 92.015862
5 45.182018 90.542490
6 43.651443 89.757566
7 44.985603 92.477244
8 45.361547 90.947952
9 44.732816 91.991373
10 46.738223 92.023571
11 46.003719 90.556965
12 45.699169 91.539567
13 45.502612 91.185225
14 46.936813 92.298971
15 44.902055 91.084639
16 45.594232 90.984471
17 47.081846 89.981744
18 45.177681 90.547140
19 47.094761 89.820219
20 42.790252 91.768721
21 46.251298 92.305556
22 45.301590 90.503017
23 46.563585 92.147974
24 46.180781 91.386320
25 45.712303 90.815660
26 44.288710 92.216574
27 46.258544 90.107460
28 45.380366 90.620318
29 47.641542 91.165331
import matplotlib.pyplot as plt
import numpy as np

bins = np.linspace(start=0, stop=100, num=80)
all_errors.plot.hist(bins=bins, edgecolor="black")
plt.legend(bbox_to_anchor=(1.05, 0.8), loc="upper left")
plt.xlabel("Mean absolute error (k$)")
_ = plt.title("Cross-validation testing errors")
../_images/9afa0b40290368120da474bf558fd3ef7133287428bab302c4472a0dfbe399ad.png

We see that the generalization performance of our decision tree is far from being perfect: the price predictions are off by more than 45,000 US dollars on average. However it is much better than the mean price baseline. So this confirms that it is possible to predict the housing price much better by using a model that takes into account the values of the input features (housing location, size, neighborhood income…). Such a model makes more informed predictions and approximately divides the error rate by a factor of 2 compared to the baseline that ignores the input features.

Note that here we used the mean price as the baseline prediction. We could have used the median instead. See the online documentation of the sklearn.dummy.DummyRegressor class for other options. For this particular example, using the mean instead of the median does not make much of a difference but this could have been the case for dataset with extreme outliers.